# Live and let die: Exports at the time of the double dip recession

T. Ferraresi L. Ghezzi

#### XXXVI Conferenza scientifica annuale AISRe

Arcavacata di Rende (Cosenza) 14 -16 settembre 2015



- The great recession and its long and painful and asymmetric aftermath strongly depressed internal aggregate demand and asked for sustainable and feasible ways out from the downturn → looking for an export-led growth strategy
- The astonishing improvement in the export performance observed in Tuscany asked for a deeper investigation of the behavior of exporters
- ③ A renewed attention to firms competitiveness as a driver of macro performance at the European level (e.g., CompNet) → the micro origins of the macro growth

- Uncovering the performance of Tuscan exporters vis-à-vis non exporters during the double dip recession
- Characterizing better the exporters distinguishing among: old exporters, new exporters, exporters which have accrued their propensity to export
- Disentangling self-selection within international markets vs. learning by exporting

- Exporters performed better than non exporters over several dimensions
- Pre 2008 exporters per se did not experience better performance than non exporters during the 2008-2012 period. However, export intensity matters a lot: those relying more on external sales at the beginning of the crisis performed better (lower mortality, higher sales growth, higher productivity growth)
- The main gains in terms of performance came from i) new exporters;
  ii) those which accrued their propensity to export; iii) heavy exporters
- There is evidence of self-selection but not significant gains in terms of growth in the post entry period (no learning by exporting)

#### Background: Tuscan exports and the crisis

Tuscan current exports (net of gold) grew at 3% per year from 2008 to 2013 (Italy: 0,9%)

#### Background: Tuscan exports and the crisis

Tuscan current exports (net of gold) grew at 3% per year from 2008 to 2013 (Italy: 0,9%)

This dynamics is far from homogeneous at the sectoral level



#### Tuscan Exporters are bigger and more productive than non-exporters

|                    |            |            | year       |            |            |
|--------------------|------------|------------|------------|------------|------------|
| Dependent variable | 2008       | 2009       | 2010       | 2011       | 2012       |
| Sales              | 0.82 (***) | 0.78 (***) | 0.79 (***) | 0.77 (***) | 0.77 (***) |
| Employment         | 0.18 (***) | 0.13 (***) | 0.11 (***) | 0.16 (***) | 0.16 (***) |
| TFP                | 0.19 (***) | 0.18 (***) | 0.14 (***) | 0.20 (***) | 0.22 (***) |

- Did exporters experience lower mortality and higher growth than non-exporters during the crisis?
- Are there any differences among exporters? e.g., new exporters vs. old exporters
- Oid firms self-select into international markets?
- Is there evidence of learning by exporting?

- We focus on Tuscan manufacturing corporations (alive in 2008)
- **2** We mix information from different data sources: ASIA, AIDA, COE
- **③** Data on sector, balance sheets, regional exports, employment etc.
- We cover the whole 2008-2012 period

We resort to a wide set of econometric techniques, from standard OLS regressions to matching, each depending on the problem at hand

- We focus on Tuscan manufacturing corporations (alive in 2008)
- **2** We mix information from different data sources: ASIA, AIDA, COE
- **③** Data on sector, balance sheets, regional exports, employment etc.
- We cover the whole 2008-2012 period

We resort to a wide set of econometric techniques, from standard OLS regressions to matching, each depending on the problem at hand  $\rightarrow$  to be discussed soon...

"Treatment" variable: dummy variable (exporter between 2001 and 2012)

- "Treatment" variable: dummy variable (exporter between 2001 and 2012)
- Output to predict mortality during the whole 2008-2012 period

- "Treatment" variable: dummy variable (exporter between 2001 and 2012)
- ② Logit model to predict mortality during the whole 2008-2012 period
- The estimates used as weights in subsequent analysis to account for firms exit throughout the inverse probability weighting (IPW; Wooldridge, 2009)

- "Treatment" variable: dummy variable (exporter between 2001 and 2012)
- Output to predict mortality during the whole 2008-2012 period
- The estimates used as weights in subsequent analysis to account for firms exit throughout the inverse probability weighting (IPW; Wooldridge, 2009)
- Outcomes either as binary response (improved 2008 performances or not) or as compounded rates of growth

- "Treatment" variable: dummy variable (exporter between 2001 and 2012)
- Q Logit model to predict mortality during the whole 2008-2012 period
- The estimates used as weights in subsequent analysis to account for firms exit throughout the inverse probability weighting (IPW; Wooldridge, 2009)
- Outcomes either as binary response (improved 2008 performances or not) or as compounded rates of growth
- Methods: logit model; OLS regression; matching

- "Treatment" variable: dummy variable (exporter between 2001 and 2012)
- Q Logit model to predict mortality during the whole 2008-2012 period
- The estimates used as weights in subsequent analysis to account for firms exit throughout the inverse probability weighting (IPW; Wooldridge, 2009)
- Outcomes either as binary response (improved 2008 performances or not) or as compounded rates of growth
- Methods: logit model; OLS regression; matching
- Controls: sector, ebit sales ratio, short-term debt, province, age class, industrial district, multinational, dimensional class, productivity

- "Treatment" variable: dummy variable (exporter between 2001 and 2012)
- Q Logit model to predict mortality during the whole 2008-2012 period
- The estimates used as weights in subsequent analysis to account for firms exit throughout the inverse probability weighting (IPW; Wooldridge, 2009)
- Outcomes either as binary response (improved 2008 performances or not) or as compounded rates of growth
- Methods: logit model; OLS regression; matching
- Controls: sector, ebit sales ratio, short-term debt, province, age class, industrial district, multinational, dimensional class, productivity
- For robustness: year-by-year estimates

Exporters have displayed a significantly lower mortality, independently of the estimation method, and:

Exporters have displayed a significantly lower mortality, independently of the estimation method, and:

|                         | with respect to non exporters (significance level) |         |         |     |         |
|-------------------------|----------------------------------------------------|---------|---------|-----|---------|
| Outcome (method)        | TFP                                                | prod    | sales   | emp | capital |
| binary (mle)            | +                                                  | + (***) | + (**)  | -   | + (*)   |
| binary (matching)       | +                                                  | + (***) | + (***) | +   | +       |
| growth rates (ols)      | + (***)                                            | + (**)  | + (***) | +   | +       |
| growth rates (matching) | +                                                  | + (*)   | + (***) | +   | +       |

Robustness analysis yields qualitatively similar results

We may face many types of firms:

- non exporters
- Old exporters (before 2008)
- old exporters by export intensity in 2008
- new exporters (starting exporting from 2008)
- those increasing their propensity to export (distinguishing among old exporters and new exporters)

#### Different exporters vis-à-vis non exporters

|                           | with respect to non exporters (significance level) |         |         |         |         |
|---------------------------|----------------------------------------------------|---------|---------|---------|---------|
| Exporter type             | TFP                                                | Prod    | Sales   | Emp     | Capital |
| pre 2008 (not increasing) | -                                                  | +       | -       | - (***) | -       |
| pre 2008 (increasing)     | + (**)                                             | + (***) | + (***) | -       | +       |
| new exporters             | +(**)                                              | + (***) | + (***) | + (***) | + (***) |
| heavy 2008                | + (***)                                            | + (***) | + (**)  | -       | -       |
| mild 2008                 | -                                                  | -       | -       | -       | -       |

Outcome (Method): binary (mle)

#### • Framework à la Bernard & Jensen (1999)

- Framework à la Bernard & Jensen (1999)
- Intersection of the section of th

- Framework à la Bernard & Jensen (1999)
- Intersection of the section of th
- **③** Outcomes: sales, employment, TFP (at time 0, -1, -2)

- Framework à la Bernard & Jensen (1999)
- Intersection of the section of th
- $\bigcirc$  Outcomes: sales, employment, TFP (at time 0, -1, -2)
- Methods: OLS regression, matching

- Framework à la Bernard & Jensen (1999)
- Intersection of the section of th
- $\bigcirc$  Outcomes: sales, employment, TFP (at time 0, -1, -2)
- Methods: OLS regression, matching
- Ontrols: sector, province, size

|                    |         | t       |         |
|--------------------|---------|---------|---------|
| Dependent variable | 0       | -1      | -2      |
| sales              | + (***) | + (***) | + (***) |
| employment         | + (***) | +       | +       |
| TFP                | + (***) | + (***) | + (***) |

- Interaction exporters \* time);
- **2** Outcomes: TFP, labor productivity, sales, capital, employment
- Methods: differences in differences
- Controls: sector, ebit sales ratio, short-term debt, province, age class, dimensional class, leading and lagged interaction terms

# RQ4: Learning by exporting? (Results)

 $y_t$  is regressed on time dummies, exporter dummy, an interaction term (our interest)

We add controls and 1 lag and 1 lead of the interaction term.

|                    | Equation |         |                |  |
|--------------------|----------|---------|----------------|--|
| Dependent variable | Baseline | 1 lead  | 1 lag & 1 lead |  |
| sales              | + (***)  | + (***) | + (**)         |  |
| employment         | + (***)  | + (***) | +/-            |  |
| TFP                | +        | -       | +              |  |
| labor productivity | + (***)  | + (***) | +              |  |
| capital            | + (**)   | +       | +              |  |

In red when the leading interaction term is positive and significantly different from  $\boldsymbol{0}$ 

## Concluding remarks & further research

- We assess the performance of exporters vis-à-vis non-exporters during the Double-Dip recession
- We show that exporters have performed better
- This is mainly due to new exporters and those which have been able to increase their propensity to export
- Exporters are bigger and more productive than non-exporters (export premium)
- This seems to be driven by self-selection, whereas we do not find convincing evidence of learning-by-exporting

- Expanding the time span may give further insights about whether the new exporters of the Double-Dip recession are different with respect to those of the previous periods, and in which dimensions
- A unique coherent estimation framework will be used to answer to all the research questions; looking for methods taking into account for unobserved time varying components; applying De Loecker (2013)'s method to detect learning by exporting

T. Ferraresi (Irpet)

Exporting & the crisis